Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xing-Shu Li, ${ }^{\text {a,b }}$ Xian Jia, ${ }^{\text {b }}$ Li-Ming Su^{b} and Zhong-Yuan Zhou ${ }^{\text {b }}$ *
${ }^{\text {a }}$ Department of Chemistry, South-West University for Nationalities, Chengdu, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China

Correspondence e-mail:
bczyzhou@inet.polyu.edu.hk

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.049$
$w R$ factor $=0.118$
Data-to-parameter ratio $=10.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

(R)-2,2'-Dimethoxy-3,3'-bis\{[(1S)-1-phenyl-ethyl]iminomethyl\}-1,1'-binaphthalene, a new chiral Schiff base

The synthesis and crystal structure of the title new chiral Schiff base, $\mathrm{C}_{40} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{2}$, derived from BINOL (1'1-bi-2-naphthol), are presented.

Comment

The search for new chiral ligands for asymmetric synthesis is an important task in organic chemistry. Various chiral Schiff bases are widely used in asymmetric reactions (Jiang et al., 1995; Belokon et al., 1997; Bandini et al., 1999, 2000; Kureshy et al., 2001; Cozzi, 2003). The successful resolution of racemic 1'1-bi-2-naphthol (BINOL) provides an economic production of (S) - or (R)-BINOL and excellent opportunity for their exploitation in asymmetric synthesis. Both enantiomers of BINOL can be used as chiral inducing agents for catalytic asymmetric reactions such as the Diels-Alder reaction, ene reaction, Lewis acid-catalysed reactions, enantioselective reduction of ketones, synthesis of chiral macrocycles, etc. (Bao et al., 1993; Terada et al., 1994; Sakane et al., 1985; Noyori \& Tomino, 1984; Sogah \& Cram, 1979; Miyano et al., 1980).

(I)

We report here the synthesis and crystal structure (Fig. 1) of a new Schiff base, viz. (R)-2,2'-dimethoxy-3, 3^{\prime}-bis $\{[(1 S)$-1-phenylethyl]iminomethyl\}-1, 1^{\prime}-binaphthalene, (I), derived from BINOL.

Experimental

To a solution of (R)-2,2'-dimethoxy-1,1'-binaphthyl (6.28 g , 20.0 mmol) and $N, N, N^{\prime}, N^{\prime}$-tetramethylethylenediamine (TMEDA) $(15.8 \mathrm{ml}, 105 \mathrm{mmol})$ in diethyl ether (300 ml) was added dropwise a solution of $n-\operatorname{BuLi}(2.0 \mathrm{M}$ in hexanes, $43 \mathrm{ml}, 86 \mathrm{mmol})$ at 273 K over a period of 30 min . The mixture was stirred for 1 h at this temperature and was then warmed to reflux. After being refluxed for 16 h , the resulting mixture was cooled to 273 K and dimethylformamide (DMF) ($25 \mathrm{ml}, 160 \mathrm{mmol}$) was added dropwise; the mixture was stirred at 273 K for 90 min and then $4 \mathrm{NHCl}(60 \mathrm{ml})$ was added with

Received 18 March 2004
Accepted 4 May 2004
Online 15 May 2004

Figure 1
The molecular structure of (I), showing 30% probability displacement ellipsoids.
vigorous stirring for 1 h . The organic layer was separated, washed with 0.5 N HCl , saturated NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated and purified by chromatography to afford 5.8 g of 2,2'-dimethoxy-1, 1'-binaphthyl-3, 3^{\prime}-dicarbaldehyde; the ${ }^{1} \mathrm{H}$ NMR data were in accord with the literature (Stock \& Kellogg, 1996). For the preparation of the title compound, (S) - α-methylbenzylamine $(6.6 \mathrm{mmol})$ and magnesium sulfate $(1.13 \mathrm{~g}, 8 \mathrm{mmol})$ were added to a solution of $2,2^{\prime}$-dimethoxy-1, 1^{\prime}-binaphthyl- $3,3^{\prime}$-dicarbaldehyde in ethanol. The mixture was refluxed for $18-24 \mathrm{~h}$ under nitrogen and filtered through celite after cooling to ambient temperature. The solvent was removed and the residue recrystallized from ethanol to afford colorless crystals (60% yield).

Crystal data

$\mathrm{C}_{40} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=576.71$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=9.614(2) \AA$
$b=15.270(4) \AA$
$c=22.838(5) \AA$
$V=3352.8(14) \AA^{3}$
$Z=4$
$D_{x}=1.143 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Siemens SMART CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.973, T_{\text {max }}=0.993$
22940 measured reflections

Mo $K \alpha$ radiation

Cell parameters from 3352 reflections
$\theta=1-17.5^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Plate, colorless
$0.40 \times 0.28 \times 0.10 \mathrm{~mm}$

> 4309 independent reflections
> 1718 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.100$
> $\theta_{\max }=27.6^{\circ}$
> $h=-12 \rightarrow 12$
> $k=-19 \rightarrow 14$
> $l=-29 \rightarrow 29$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.118$
$S=1.01$
4309 reflections
402 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.035 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.006 \\
& \Delta \rho_{\max }=0.29 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.17 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0022(4)
\end{aligned}
$$

All H atoms were positioned geometrically and refined in the riding-model approximation, with $\mathrm{C}-\mathrm{H}$ distances of 0.93 (aromatic) and $0.96 \AA$ (methyl), and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}\left(\mathrm{C}_{\text {aromatic }}\right)$ and $1.5 U_{\text {eq }}\left(\mathrm{C}_{\text {methyl }}\right)$. In the absence of significant anomalous scattering, the absolute configuration is indeterminate and has been assigned arbitrarily; Friedel pairs were merged. The crystal structure contains a void of $52 \AA^{3}$ positioned at $(0.29,0.19,0.38)$. However, the Fourier difference map shows no peaks higher than 0.29 e \AA^{-3}, indicating the absence of solvent.

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT and SHELXTL (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors thank the Hong Kong Research Grant Council for financial support of this study.

References

Bandini, M., Cozzi, P. G., Melchioree, P. \& Umani-Ronchi, A. (1999). Angew. Chem. Int. Ed. 38, 3357-3359.
Bandini, M., Cozzi, P. G. \& Umani-Ronchi, A. (2000). Angew. Chem. Int. Ed. 39, 2327-2330.
Bao, J., Wulff, W. D. \& Rheingold, A. L. (1993). J. Am. Chem. Soc. 115, 3814 3815.

Belokon, Y., Flego, M., Ikonnikov, N., Moscalenko, M., North, M., Orizu, C., Tararov, V. \& Tasinazzo, M. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 12931295.

Cozzi, P. G. (2003). Angew. Chem. Int. Ed. 42, 2895-2898.
Jiang, Y., Zhou, X., Hu, W., Wu, L. \& Mi, A. (1995). Tetrahedron Asymmetry, 6, 405-408.
Kureshy, R. I., Khan, N. H., Abdi, S. H. R., Patel, S. T. \& Jasra, R. V. (2001). Tetrahedron Lett. 42, 2915-2918.
Miyano, S., Tobita, M., Nawa, M., Sato, S. \& Hashimoto, H. (1980). J. Chem. Soc. Chem. Commun. pp. 1233-1234.
Noyori, R. \& Tomino, I. (1984). J. Am. Chem. Soc. 106, 6709-6716.
Sakane, S., Maruoka, K. \& Yamamoto, H. (1985). Tetrahedron Lett. 26, 55355538.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1995). SMART and SAINT (Versions 4.0), and SHELXTL (Version 5.10). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sogah, G. D. Y. \& Cram, D. J. (1979). J. Am. Chem. Soc. 101, 3035-3042.
Stock, H. T. \& Kellogg, R. M. (1996). J. Org. Chem. 61, 3093-3105.
Terada, M., Motoyama, Y. \& Mikami, K. (1994). Tetrahedron Lett. 35, 66936696.

